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Annual Summary Report

"Quantum Monte Carlo for Molecules"

Principal Investigators:
William A. Lester, Jr.

Peter J. Reynolds

Materials and Molecular Research Division
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

Description of Problem and Approach

Introduction.

Many-body problems in physics are often treated by a Monte Carlo

approach [1]. The Monte Carlo method is statistical in nature. Based on the gen-

eration of "random" numbers or "coin tosses," it derives its name from a city

famous for the random numbers embodied in its games of chance. Thus it 1-

perhaps easy to imagine using the Monte Carlo method for treating inherently

statistical models, or even for numerical integration [2,: it is. however, less obvi-

ous how to solve many-body problems with it. Nevertheless. many such prob-

lems are readily treated by Monte Carlo.

Of particular interest to molecular physics are the quantum mechanical

Monte Carlo (or QMC) methods . What we mean by QMIC is a Monte Carlo

procedure for solving the Schr6dinger equation statistically by the simulation of

an appropriate random process. The formal similarity of the Schr6dinger equa-

tion with a diffusion equation allows one to calculate quantum mechanical expec-

tation values as Monte Carlo averages over an ensemble of random walks. The - P

- . . . . . . N . . . . . . . . . .
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method is procedurally quite simple. As a result, QMC provides an attractive

alternative to the conventional variational and perturbation-theoretic techniques

used in physics and chemistry. 7 ' i.

Past Work

We have applied QMC sucessfully to the calculation of the total energy of a

number of molecular systems [4-7]. In every case we have achieved very high

accuracy compared with experimentally inferred and exact results (where avail-

able), as well as ab initio configuration interaction calculations. In most cases,

90-100% of the correlation energy has been obtained.

In the past few years our research program has begun to make a more

significant contribution [5-7] by obtaining quantities of more physical interest

than total energies. For example, much of chemistry takes place predominantly

in the valence electrons of a system. Thus the quantities of interest are usually

small differences of large total energies. Examples of such differences include

binding energies, electron affinities, reaction barriers, and level splittings. We

have performed calculations for each of the above-mentioned quantities. Such cal-

culations are a far more difficult task for Monte Carlo, since a small statistical

uncertainty (e.g. of as little as 0.1%) in the separate total energies can mask the

sought-after energy difference. To reduce the statistical error to the level needed

by "brute force" is costly in computer time, as the standard deviation decreases

* only as (CPU time )-. Algorithmic developments, such as differential QMC [8]

hold promise for reductions in variance through correlated sampling techniques.

Another approach is based on the variance reduction achieved as a trial wave

. .. . .. .. . . . . -. . ..- . . . .... .. ... . ........... .. .. .. - .- -,-, . ./ , , -'.. i..
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function %PT approaches the true eigenfunction. To take advantage of this latter

approach we have developed an iterative procedure for improving %PT [7]. We

are currently working on an improved iterative procedure, as well as on different

forms of correlation functions, and on methods of Monte Carlo optimization of

the correlation parameters.

Using QMC, we have recently studied points along the reaction coordinate of

the H + H2 exchange reaction [6]. Particular emphasis has been placed on the

saddle-point geometry, for which Liu [9] has performed the most extensive CI cal-

culation to date. The bound for the barrier height which we obtained by QMC is

*. 0.16 kcal/mole below Liu's bound, and probably lies within 0.1 kcal/mole of the

exact answer. In addition, we were able to obtain these results with only single-

determinant trial functions, and a basis set expansion at only the double-zeta

level. The nodes (see below), which are important in determining the correct

energy, prove to be quite insensitive to basis set beyond the double-zeta level.

Until recently, QMC applications have been limited to calculations of ener-

gies of ground states and lowest states of a given symmetry. As an example of

. the latter, we calculated the singlet-triplet splitting in methylene [7]. The two

* .:states studied are both lowest-energy states of their respective symmetries. In

* '- these studies, the accuracies obtained with QMC have been comparable to the

le best achieved by conventional ab initio methods. In section II, where we discuss

progress during the current year, we include our recent effort in extending QIC

to excited states of the same symmetry as the ground state. In that section. we

also report on calculations of properties unrelated to the energy and of energy

S.. ,,'- ,
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gradient calculations. However, before going into detail, in what follows we

describe the theoretical background of QMC.

QMC Theory

Briefly, one simulates a quantum molecular system by allowing it to evolve

under the time-dependent Schr6dinger equation in imaginary time. It is easy to

show [4] that the use of imaginary time causes the system to approach a station-

ary state which is the lowest state of a given symmetry. Many properties may

then be "measured" as averages over the resulting equilibrium distribution.

By writing the imaginary-time Schrodinger equation with a shift in the zero

of energy as

a(R,t) = D V 2q(R,t ) + [E-1 T (_)]'4'(f.,t) (1)
at

we see that it may be interpreted as a generalized diffusion equation. The first

term on the right-hand-side is the ordinary diffusion term, while the second term

is a position-dependent rate (or branching) term. For an electronic system.

D = 1 2/2me,R is the three-N dimensional coordinate vector of the N electrons,

and V (&) is the Coulomb potential. Since diffusion is the continuum limit of a

random walk, one may simulate Eq. (1) with the function %P (note, not %p2) as the

density of "walks". The walks undergo an exponential birth and death as given

by the rate term. This connection between a quantum system and a random

walk was first noted by Metropolis, who attributes it to Fermi [10].

The steady-state solution to Eq. (1) is the time-independent Schr6dinger

equation. Thus we have 4'(R .t )-6(R). where o is an energy eigenstate. The

* - A A ,.

* p * A .' A...
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value of ET at which the population of walkers is asymptotically constant gives

the energy eigenvalue. Early calculations employing Eq. (1) in this way were

done by Anderson on a number of one- to four-electron systems [11].

Unfortunately, in order to treat systems larger than two electrons, the Fermi

nature of the electrons must be taken into account. The antisymmetry of the

eigenfunction implies that T must change sign; however, a density (e.g. of walk-

ers) cannot be negative. To handle this, Anderson made simplifying assumptions

about the positions of the nodes. His method was ad hoc , and not readily gen-

eralizable. Another method which imposes the antisymmetry, and at the same

time provides more efficient sampling (thereby reducing the statistical "noise"), is

importance sampling with an antisymmetric trial function %PT (see e.g. Ref. 4).

The zeroes (nodes) of 4,T become absorbing boundaries for the diffusion process:

*' this maintains the antisymmetry. The additional boundary condition that 4f

vanish at the nodes of %PT is the fixed-node approximation [4,12]. The magni-

tude of the error thus introduced depends on the quality of the nodes of 4F T

and vanishes as 11T approaches the true eigenfunction. To the extent that q/ T is

a good approximation of the wave function, the true eigenfunction is almost cer-

tainly quite small near the nodes of 4f T . Thus one expects the fixed-node error

to be small for reasonable choices of %P T Work on a number of systems has

borne this out [4-7,13,141. In addition, this error is variationally bounded.

To implement importance sampling and the fixed-node approximation, Eq.

(1) is multiplied by 'PT, and rewritten in terms of the new probability density

" '(R .t )-)=P T (- )P(R .t ). The resultant equation for f (9 .J) may be written

" . Vv



,f = D V 2  +[ET-EL(R)]f -D V.[f rQ (R)] (2)

The local energy EL (R), and the "quantum force" FQ (.) are simple functions

of %P T given by

EL ( R ) =_H 'PT (R ) / *P T ( R ) ,(3a)

and

ro ()=-2V (R_/ r(R)(3b)

Equation (2), like Eq. (1), is a generalized diffusion equation, though now with the

addition of a drift term due to the presence of FQ .

In order to perform the random walk implied by Eq. (2) we use a short-time

approximation to the Green's function. The Green's function is used to evolve

the distribution forward in time, i.e. (R,t )-f(R',t +r). This process is

iterated to large t. Such an approach becomes exact in the limit of vanishing

time-step size, r. Asymptotically, f(R ,t )-f,(R )=%T (R ) (R ).

The function _ is the lowest-energy eigenfunction of the Schr6dinger

equation for the imposed set of nodes. Although neither this function nor f, is

known analytically, we can nevertheless sample desired quantities from the equili-

brium distribution. Averages taken with respect to the distribution I are

known as mixed averages. For example, sampling a quantity .4 in equilibrium

after N samples gives the average (in the limit of large N)

U 1

configs

=f (R )A dR (4)
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d?

f* T(-)Q(L_ ) .4 dl?

f %1( (R ) dR

or in abbreviated Dirac notation (with the normalization absorbed),

<A >f -<TT IA I > • (5)

On the other hand, the correct expectation value of A, for a state o. is

<0 A I 0>. In computing the energy, or any property for which 0 is an eigen-

state, there is no difference between these two averages. This follows since the

eigenvalue can be taken out of the integral in the numerator of Eq. 4. In particu-

lar, to compute the energy one samples the local energy EL( R_ ). Then

<E>= ()'ThWPTW.
(.fo _ )' T (R )dl?

=<o 1H Pr >=Ec,

where E 0 is the eigenvalue corresponding to the state o. The last equality fol-

lows upon noting that H is Hermitian, and thus can operate to the left. This

ends our overview of QOIC theory.

- Progress in Current Year

Molecular Properties. For expectation values of quantities whose opera-

[to~r do not commute with II. the mixed average of Eq. 5 is only approximate.

One suspects that the mixed average is in some sense "half-way" between the

. exact expectation value (with reipect to o) and the variational expectation value.

" taken with respect to the trial wave function, i.e. <4 TA %PT > . Taken

literally, tli imnplies that <o . I o> = 2 <1PT .- O>-< ' T .4 \ T > "

Th is resut -" an be formalize' -I t lrou"h the following ar; ieI. Tle trial func ltli

r.7--



'1', if it is good, differs from € only by a "small" function A, i.e. ¢=4 'T+A.

Then

<A > < I'T A I> + <A A 

<*T IA I€> + <A A q1T >

A2<T I - <'T Ia 'IT> A (7)

The first equality follows on expanding the € bra. The approximation in the next

line occurs on expanding the € ket in the second term, and dropping the resulting

term of order A2 . Finally, A is re-expanded; A is assumed an observable, and

hence Hermitian. This gives an approximate formula for expectation values

taken solely with respect to € from just mixed and variational averages. The

above argument ignores the different normalizations implicit in the different

terms. However, it is easy to demonstrate that Eq. 7 divided by <€ I 0> differs

from 2 < T JA 10>/<P'T I>- <%PT JA IrT>/<IT I'T> by terms

of only 0 (A 2 ). This gives the desired result. It is, however, difficult to know

how significant it is to drop terms of order A 2 . Thus, it is desirable to be able to

sample exactly from the distribution 2 . This can be done, though with some

changes to the usual QMC algorithm. The distribution f,, must be weighted

locally by o(R )/' T (R). This quantity is essentially the asymptotic number of

survivors of the local configuration R [15]. Thus, algorithmically, one must fol-

low each configuration into the future before computing any averages. Details of

our algorithm will be presented in [16]. Our results (see Tables 1 and 2) show

that while the variational approximation is poor, the approximate formula (Eq. 7)

is quite good. Furthermore, excellent agreement with exact results is obtained by

sampling from the pure I 2 distribution.

.-.3



Energy Derivatives. \Vhile conventional ab tnitio approaches regularly

compute the analytic gradient of the energy with respect to nuclear coordinates

in order to determine forces, and thereby equilibrium geometries [17] and (by

finite difference or higher analytic derivatives) harmonic vibrational frequencies

[18], only finite-difference approaches have been implemented in QMC [8]. In

principle there is no reason for this limitation. To compute the energy derivative

with respect to a nuclear coordinate p, we write

d <E>f. d f_0^__E___PT_(9 _E_(9 __

d p dp f (R )dpT W dR

< EL
+-< >>dp - < 9

+ < ___ EL > -< 1 (8)

The second equality is obtained from differentiation using the chain rule, followed

by expression of the resulting ratios as averages over the distribution f,. The

derivative &o/op is unknown: it is however possible to sample it. The other
.0

terms in Eq. 8 may be evaluated straight-forwardly during the QMIC simulation.

Rather than sampling 9o/p, as a first approximation we may take

0-lb/Op~ d
l 

4'1 T /Op. This turns out to be a good approximation even when

U

------------------------.. , - - - -.-. -4- - *--
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4 r is only of moderate accuracy (e.g. double-zeta Hartree-Fock).

Using this approach, we have performed calculations on H at a few nuclear
2

separations (19]. Our results are presented in Table 3, and Figures 1 and 2,

where they are compared with the essentially exact work of Kolos and Wol-

niewicz [20J, as well as with the results of conventional ab initio approaches. As

can be seen, QMC is competitive with CI, and far superior to Hartree-Fock.

Attempting to construct the potential-energy curve of H 2 from just the four

QMC energy data points (all of which are exact to within the standard error)

leads to the curves of Figure 1. However, the additional information present in

the first derivatives leads to a Monte Carlo potential-energy curve (cf. Fig. 2)

indistinguishable from the exact one [20].

Excited States. As mentioned in Sect. I, work thus far with QMC has

been limited to ground-state potential-energy surfaces and lowest-energy states of

a particular symmetry [4-7,14]. For example, we have calculated the energy of

the first excited state of methylene [7] in order to obtain the (until recently)

elusive singlet-triplet splitting. This was the first molecular QMC calculation of

an excited state. Our results there were in excellent agreement with the most

recent experiments. The restriction on lowest energy states of a symmetry comes

from an essential feature of the mapping of the Schr~dinger equation into its

diffusion analog--namely, that time in these two equations differs by a factor of i.

This means that the expansion of a time-dependent molecular state vector in

energy elgenfunctions multiplied by exp(-iEt /#), results in a series in which only

the lowest energy term (i.e. o) survives at large t . Thus one obtains exponential



• % .. .,2', .* . : ,.., [ , . .
I  

. - . - I - I J

.71.

convergence to the lowest energy eigenstate.

If P T is orthogonal to the exact lowest-energy state, one can see from Eq. 6

that convergence will be to the next-lowe-t energy. (Initially € contains a super-

position of states.) This fact actually is used even in the calculation of molecular

ground-state energies, as Fermi states are excited states (with respect to the

Boson ground state) of the Schr6dinger equation. By choosing %PT to be

antisymmetric with respect to particle exchange, one can project out all sym-

metric states. A similar result holds for calculations of different symmetry states

of a given molecule.

When studying states of the same symmetry, it is generally not possible to

find a trial wave function exactly orthogonal to all the lower-energy states of that

symmetry. This implies that convergence will ultimately be to the lowest-energy

state. However, the fixed-node approximation used to treat the Fermi problem is

of assistance here too. In the fixed-node approximation, the nodes of %PT are

used to divide R -space into separate volume elements. The Schr6dinger equation

is solved separately in each of these elements. This results in a solution of the

Schr6dinger equation with added boundary conditions. Viewed this way, the

Fermi problem is handled by forcing the generation of an antisymmetric state

above the Bose ground state through the placement of nodes in the solution 0.

r, In like manner, other excited states can be treated approximately by imposing

additional nodes. The accuracy of the approximation will depend on how well

L-.. . these nodes are placed.

U
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In treating excited states, traditional ab nitio methods generate wave func-

tions with the correct number and dimensionality of nodes. Thus such wave

functions are a good place to begin in searching for an excited-state VPr We

report preliminary results achieved with QMC in this way. A more detailed

:1 report is in preparation [21]. Tables 4 and 5 report our results on respectively.

the first two excited state of the He atom (which are of the same symmetry as

the ground state) and of the first excited state of H2 (which is of a different sym-

metry than the ground state). In the case of He, we have obtained 64% of the

correlation energy for the Is2s S state and 90% of the correlation energy of the

ls3s 1S state. Though the former appears low (percentage-wise), we note that

our total energy is within 0.6 kcal/mol of the experimental energy, which is gen-

erally regarded as chemical accuracy. For H2 we note that there is some basis-set

dependence--at least with such small bases. Nevertheless, a fairly simple basis set

(double-zeta plus polarization) yields approximately 80% of the correlation

energy. We expect that better results will be obtained through the use of better

optimized trial functions.

Improved LiH. In test runs on our properties and derivatives programs, as

well as in tests on our new correlation functions [see (1) in Appendix]. we have

.".- been using the LiH molecule as a sample system. In the course of these runs, we

have calculated new bounds on the ground-state energy of LiH. In fact, our new

correlation function has allowed us to rapidly reduce our variance for this energy.

. Our previous LiH results [4] were better than any ab initio calculations available

at the time. Recently, workers using CI techniques have put a large effort into
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showing that "they could do better than QMC." They achieved a new energy

bound, lower than our old QMC results. However, as a result of our test runs

alone, we have achieved an energy which is essentially the exact result (Table 6).

.

.

V
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Appendix

Related Work Supported by DOE

Trial Wave Functions. For use in QMC one wants a trial function which

is as simple as possible, since it will require repeated evaluation at each step of

the random walk. Yet one wants a function which provides accurate results. In

principle, since QMC solves the Schr6dinger equation, one should obtain accurate

results regardless of the choice of TT. However, as we noted already, for Fermi

systems inaccurate nodes in 'T will lead to a small error when the fixed-node

approximation is used. Furthermore, the statistical "noise" will be large for a

poor choice of %P T

We have found in our work that a single determinant 4 'T with only a

double-zeta basis set places the nodes extremely well in ground-state calculations,

as determined by the quality of the computed total energies. Increasing the basis

set beyond double zeta appears to offer insignificant gain in either accuracy (i.e.

the fixed-node error does not noticeably decrease) or precision (the statistical

uncertainty, for equal computing time, remains essentially unchanged). In prac-

tice we have included an electron-electron Jastrow factor in our functions %PT in

order to reduce statistical fluctuations, and in mans" cases we have also included

an electron-nuclear factor. Neither factor affects the positioning of the nodes,

and hence the fixed-node energies remain unchanged. However, the Jastrow's do

have an important effect on variance reduction.

...- % . S,
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By optimization of a small number of parameters (2 - 4), it appears that an

order of magnitude improvement in computer time can be achieved. Addition-

ally, we are now experimenting with other forms of correlation function in the

hope of finding further variance reduction. In contrast to the usual Jastrow

forms of

Jij =exp l , (Ala)

and

Ji XMexp lvr, 
(Ab

for the electron-electron and electron-nuclear terms respectively, we have done

some experimentation with an electron-electron correlation function of the form

171(1-a exp(brij +cr4,) (A2)
ij

A similar form can be used for the electron-nuclear correlation function. As with

the Jastrow form, only the variance is affected, as this term does not introduce

any nodes of its own. It turns out that this form is considerably more flexible

than Eq. (Al). Although an extended Jastrow form appears to offer the same

flexibility, it appears more difficult to optimize. Iterative improvement of T is

also of potential benefit. One such scheme--a global rescaling of 4'T--has been

described by us [7]. A more powerful, local scheme is being developed currently.

Electron Affinity of Fluorine. Although properties for which o is not an

eigenstate, such as the electronic charge distribution, need to be sampled as

described in point (1) above, many important quantities are energy related.

. . .
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These quantities can be computed more simply--though two different energies

must be calculated very accurately. One such energy-related quantity is the elec-

-'- tron affinity. This past year we have performed an accurate QMC calculation of

the electron affinity of fluorine [22]. These results--like our energies--exceed the

quality of the best variational calculations, and are in excellent accord with the

recommended experimental value.

Parallel Computing. Monte Carlo, as alluded to earlier, is such a compu-

tationally intensive activity that new techniques are needed if one wishes to

" attack large systems or obtain very high precision (e.g. better than gg.99%). One

avenue we have explored, in collaboration with the Advanced Computer Archi-

tecture Laboratory at LBL, is the use of parallel computing architectures [23].

Briefly, we have found that Monte Carlo can be readily made to run at 95%

efficiency on an 8 processor system. We explored several different directions for

parallelizing QMC, as well as load-balancing techniques to keep the efficiency

near 100%. It is expected that a slightly restructured parallel code can run at

essentially 100% efficiency with an almost unlimited number of processors. Thus,

- with sufficient memory, precision will scale as the square root of the number of

-processors, while computing time for a fixed precision will scale inversely almost

-. *linearly with processors.
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Table 1. Comparison of expectation values for properties of H The properties
studied are expectation values of the squared distance from the ?2 axis, along the
H. axis, and from the center of the molecule (in bohr2 ). The electric quadrupole
moment, Q, (in esucm2 x10 -2 ) can be derived from the other expectation
values. The trial function, 41T, is a single-zeta-plus-bond SCF function, multi-
plied by electron-electron and electron- .uclear Jastrow functions. The function.
€, is the exact wave function in this case, since there are no nodes for the
ground-state of H_. However, a small bias due to the short-time approximation
may be present. I3ere the time step is r-0.01 au. "Approximate formula" refers
to Eq. 7 of the text. Statistical uncertainty in the last significant figures is shown
in parentheses.

Method (<x2> + <y2>) <z2> <r2> Q

Best Variationala 1.554 1.020 2.574 0.664

<%TIA I"T > 1.543(2) 1.078(2) 2.621(3) 0.49(l)

< I A O 0> 1.534(5) 1.047(4) 2.580(9) 0.56(2)

~Approximate

poxmat 1.525(10) 1.016(9) 2.539(18) 0.63(5)
Formula

.4  5> 1.527(6) 1.025(5) 2.552(10) 0.61(3)

Exactb 1.523 1.023 2.546 0.61

a Ref. 24.
b Ref. 25.
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Table 2. Comparison of values obtained for the electric quadrupole moment of
N.. The trial function, PT, is a double-zeta SCF function, multiplied b,"
electron-electron and electron-nuclear Jastrow functions. Time steps of r=0.0025
and 0.00125 au are used, with no noticable bias present. "Approximate formula"
refers to Eq. 7 of the text. Statistical uncertainties are indicated in parentheses.

Method Q (esucm 2 x10- 26)

Hartree-Focka -1.29

MCSCFa -1.22

<%Pr IQ I'PT> -2.19(4)

< I -1.80(10)

Approximate -1.41(20)
Formula

Experimentb -1.4(1

a Ref. 26.
b Ref. 27.

o'•

.......................... .. . . . . . . .
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Table 3. Comparison of energy derivatives of H, at various geometries with
standard techniques. The QMIC trial function consists of a double-zeta SCIF wave
function multiplied by an electron-electron correlation function of the form
11(1-a exp(br.j +crj )). The parameters used are a =0.48, b =0.54, c =0.33,
ii

and d =1.4. Time steps ranging from r=-O.1 au to 7=0.005 au are used. The
quoted results are extrapolations to 7=0. Energies are in hartrees and derivatives

* in hartrees/bohr. Statistical uncertainties are indicated in parentheses.

p=0.4 bohr p=O.9 bohr p=1.4 011 bohr p=1.9 bohr

* MethodT

E dE/Id E dEIdo p dE Idp £ dEId p

SCF .07' -6.030- '-1.04331 -0.5145, .35 0.0053' -1. 1017' 0.09704

-. -1.0826 -0.5101 1!-1.1737 0.0007 1-.41 0.0851

QMC -0.1192(13) -.5.297(12) -1.0831(12) 1 -0.5053(45) -1.1745(12) 0.0009(24) 1-1.1467(11) 0.1028(55)

Exact' -0.1202 -5.307 -1.0836 -0.5007 1-.74 0.0000 . 11469 1005

a Ref. 28.
b Pulay in Ref. 17.

Ref. 29.
d Present work.

Ref. 20.
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Table 4. Comparison of the energy of the first two excited IS states of He with
SCF and experiment. The SCF wave function, whose energy is shown in the
table, is used as the QMC %PT. The column headed %oCE gives the percentage
of the correlation energy recovered, and is computed relative to the SCF number
in the first row of the table. A time step of 1-0.05 au is used. Statistical uncer-
tainties are indicated in parentheses.

Is2s 1s3s

Method E(h %CE A(EExp) E 2(h) %CE A(EExp)
(kcal/mole) (kcal/mol)

SCFG -2.14307 0 1.83 -2.06036 0 0.577

QMC -2.14493(7) 64 0.66(4) -2.06119(7) 90 0.06(4)

Experiment6  -2.14598 IOC- 0.00 -2.06128 100 000

a Ref. 30.
b Ref. 31.

V

* ... . . .... . ... . . ..~~~~~~~~~~~~~~~~~.. ..- , . ,-. . . .. . . .,-. . . . ... . . . .. , . : ,, , ,. . . . . .. . . •. . . .: .. ::
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Table 5. Comparison of the energy of the first excited singlet state of H, (B
1"'U) at its equilibrium geometry with self-consistent field (SCF), configuration

interaction (CI) and exact results. For QMC, two different trial functions are
used. They are constructed from double-zeta (DZ) and double-zeta-plus-
polarization (DZP) SCF functions. The column headed % CE gives the percen-

* tage of correlation energy recovered, and is computed relative to the SCF number
in the first row of the table. A time step of r=0.01 au is used. Statistical uncer-

- -vtainties are indicated in parentheses.

Method E (h) % CE A(E-Eexact)
(kcal/mole)

SCF -0.742 0 9.4

-0.748(2) 41 5.6
(DZ)

Q)C -0.7536(3) 79 1.9:::- (DZP)

CI -0.7553 90 0.9

Exact -0.7567 c 100 0.0

a Ref. 32.
b Ref. 33.
c Ref. 34.

pJ..°

v".
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Table 6. Comparison of LIH energies (in hartrees).

Method E

Best variational- 8.065
(pre-1982)

QMC (1982)b -8.067(2)

CI (current) -8.0690

QMC (current) 8.0702(4)

"Exact"' 8.0705

Ref. 35
b Ref. 4

Ref. 36
' Ref. 37

.4.
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Figure Captions

Figure 1. Fit of the potential energy curve for H . Two different fits to the
four energy points are shown. Neither a third-order Legendre polynomial fit. nor
an exponential spline, gives an adequate representation of the curve compared
with the exact potential of Kolos and Wolniewicz.

Figure 2. Fit of the potential energy curve for H2 including energy derivatives.
A Hermite polynomial fit to the data, which is possible with the additional infor-

mation available from the derivatives, is indistinguishable from the exact curve.
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